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A variety of DNA sequences and proteins are important for transcriptional silencing. The ORC is involved in 
both DNA replication and silencing, and different portions of ORC proteins carry out its separate functions 
(16).The ORC recruits Sirlp, which is required for silencing to be established (9). In contrast, other compo- 
nents of the ORC involved in replication seem to be important for movement of the replication fork along 
the DNA; any part that they may play in silencing remains obscure. Although some ORC components are 
required for efficient silencing, others inhibit silencing; differential effects of these proteins are seen de- 

pending on whether silencing is examined in yeast mating-type loci or in ribosomal DNA (12, 13, 17). ARS, 
autonomously replicating sequence (the site of ORC binding); RF-C, replication factor C. 
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reduce the stable inheritance of silencing at 
telomeres and impair the maintenance of si- 
lencing at HMRa, HMLa, and other loci 
(10-12). The connection with DNA replica- 
tion is that CAF-I deposits newly synthesized 
histones onto newly replicated DNA. Further- 
more, mutations in proliferating cell nuclear 
antigen (PCNA) that disrupt the association of 
this replication protein with CAF-I also impair 
the inheritance of silencing (13). The implica- 
tion is that DNA replication may well prove 
crucial for "persistence" of the silent state. 

This returns us to the original question: 
What makes S phase important for transcrip- 
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tional silencing? Strictly speaking, the phase 
of the cell cycle required for silencing to be es- 
tablished is somewhere between early S phase 
(the point where hydroxyurea blocks cell cycle 
progression) and mitosis (where nocodazole 
has its inhibitory effect) (1). This suggests that 
the S-phase requirement for silencing may in 
reality be a point somewhere in late S phase, in 
G2, or possibly even in early mitosis. 

The cell's DNA replication machinery is 
fully capable of replicating conventional chro- 
matin or previously silenced chromatin. How- 
ever, it may be challenged by the drastic alter- 
ations in chromatin structure that accompany 
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the establishment of silencing, during which 
the chromatin changes from the relatively 
open unsilenced state to the closed heterochro- 
matic state. To prevent such molecular con- 
flicts, the silencing machinery may be activat- 
ed by an intracellular signal sent when DNA 
replication has been completed. In fact, Sir 
proteins can move to new locations inside the 
cell in response to various forms of DNA 
damage (14, 15), indicating that they can re- 
spond to signals sent by changes in DNA state. 
Needless to say, there are many other possible 
events that could control the establishment of 
silencing through the generation of specific 
cell cycle signals or changes in nuclear struc- 
ture. But what was once considered the most 
likely event-replication of the DNA prior to 
silencing-does not appear to be among them. 
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The archaeological and historical record 
is replete with evidence for prehistoric, 
ancient, and premodern societal col- 

lapse. These collapses occurred quite sud- 
denly and frequently involved regional aban- 
donment, replacement of one subsistence 
base by another (such as agriculture by pas- 
toralism), or conversion to a lower energy 
sociopolitical organization (such as local 
state from interregional empire). Each of 
these collapse episodes has been discussed 
intensively within the archaeological com- 
munity, commonly leading to the conclu- 
sion that combinations of social, political, 
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and economic factors were their root causes. 
That perspective is now changing with the 

accumulation of high-resolution paleoclimat- 
ic data that provide an independent measure 
of the timing, amplitude, and duration of past 
climate events. These climatic events were 
abrupt, involved new conditions that were 
unfamiliar to the inhabitants of the time, and 
persisted for decades to centuries. They were 
therefore highly disruptive, leading to soci- 
etal collapse-an adaptive response to other- 
wise insurmountable stresses (1). 

In the Old World, the earliest well-docu- 
mented example of societal collapse is that of 
the hunting and gathering Natufian commu- 
nities in southwest Asia. About 12,000 years 
ago, the Natufians abandoned seasonally no- 
madic hunting and gathering activities that 
required relatively low inputs of labor to sus- 
tain low population densities and replaced 
these with new labor-intensive subsistence 
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strategies of plant cultivation and animal hus- 
bandry. The consequences of this agricultural 
revolution, which was key to the emergence 
of civilization, included orders of magnitude 
increases in population growth and full-time 
craft specialization and class formation, each 
the result of the ability to generate and deploy 
agricultural surpluses. 

What made the Natufians change their 
lifestyle so drastically? Thanks to better dat- 
ing control and improved paleoclimatic inter- 
pretations, it is now clear that this transition 
coincided with the Younger Dryas climate 
episode about 12,900 to 11,600 years ago. 
Following the end of the last glacial period, 
when southwest Asia was dominated by arid 
steppe vegetation, a shift to increased season- 
ality- (warm, wet winters and hot, dry sum- 
mers) led to the development of an open oak- 
terebinth parkland of woods and wild cereals 
across the interior Levant and northern 
Mesopotamia. This was the environment ex- 
ploited initially by the hunting and gathering 
Natufian communities. When cooler and drier 
conditions abruptly returned during the 
Younger Dryas, the harvests of wild resources 
dwindled, and foraging for these resources 
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could not sustain Natufian subsistence. They 
were forced to transfer settlement and wild ce- 
reals to adjacent new locales where intention- 
al cultivation was possible (2). 

The population and socioeconomic com- 
plexity of these early agricultural settlements 
increased until about 6400 B.C., when a sec- 
ond postglacial climatic shock altered their de- 
velopmental trajectory. Paleoclimatic evidence 
documents abrupt climatic change at this time 
(3), the last major climatic event related to the 
melting continental ice sheets that flooded the 
North Atlantic (4). In the Middle East, a -200- 
year drought forced the abandonment of agri- 
cultural settlements in the Levant and northern 
Mesopotamia (5, 6). The subsequent return to 
moister conditions in Mesopotamia 
promoted settlement of the Tigris- 
Euphrates alluvial plain and delta, 
where breachable river levees and 
seasonal basins may have encour- 20006 
aged early southern Mesopotamian 
irrigation agriculture (7). 

By 3500 B.C., urban Late Uruk rm 3000 
society flourished in southern Meso- 
potamia, sustained by a system of 
high-yield cereal irrigation agricul- 4 4000 
ture with efficient canal transport. 
Late Uruk "colony" settlements were o 
founded across the dry-farming por- _) 5000 
tions of the Near East (8). But these o 
colonies and the expansion of Late 
Uruk society collapsed suddenly at 6000 
about 3200-3000 B.C. Archaeolo- Climatic 
gists have puzzled over this collapse speleothe 
for the past 30 years. Now there are ment abr 
hints in the paleoclimatic record that pire collaF 
it may also be related to a short (less 
than 200 year) but severe drought (9-11). 

Following the return to wetter conditions, 
politically centralized and class-based urban 
societies emerged and expanded across the 
riverine and dry-farming landscapes of the 
Mediterranean, Egypt, and West Asia. The 
Akkadian empire of Mesopotamia, the pyra- 
mid-constructing Old Kingdom civilization 
of Egypt, the Harappan C3 civilization of the 
Indus valley, and the Early Bronze III civi- 
lizations of Palestine, Greece, and Crete all 
reached their economic peak at about 2300 
B.C. This period was abruptly terminated be- 
fore 2200 B.C. by catastrophic drought and 
cooling that generated regional abandon- 
ment, collapse, and habitat-tracking. Paleo- 
climatic data from numerous sites document 
changes in the Mediterranean westerlies and 
monsoon rainfall during this event (see the 
figure), with precipitation reductions of up to 
30% that diminished agricultural production 
from the Aegean to the Indus (9-11). 

These examples from the Old World il- 
lustrate that prehistoric and early historic 
societies-from villages to states or em- 
pires-were highly vulnerable to climatic 
disturbances. Many lines of evidence now 
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point to climate forcing as the primary 
agent in repeated social collapse. 

High-resolution archaeological records 
from the New World also point to abrupt cli- 
matic change as the proximal cause of repeat- 
ed social collapse. In northern coastal Peru, the 
Moche civilization suffered a -30-year 
drought in the late 6th century A.D., accompa- 
nied by severe flooding. The capital city was 
destroyed, fields and irrigation systems were 
swept away, and widespread famines ensued. 
The capital city was subsequently moved 
northward, and new adaptive agricultural and 
architectural technologies were implemented 
(12). Four hundred years later, the agricultural 
base of the Tiwanaku civilization of the central 
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Andes collapsed as a result of a prolonged 
drought documented in ice and in lake sedi- 
ment cores (13). In Mesoamerica, lake sedi- 
ment cores show that the Classic Maya col- 
lapse of the 9th century A.D. coincided with 
the most severe and prolonged drought of that 
millennium (14). In North America, Anasazi 
agriculture could not sustain three decades of 
exceptional drought and reduced temperatures 
in the 13th century A.D., resulting in forced re- 
gional abandonment (15). 

Climate during the past 11,000 years was 
long believed to have been uneventful, but 
paleoclimatic records increasingly demon- 
strate climatic instability. Multidecadal- to 
multicentury-length droughts started abrupt- 
ly, were unprecedented in the experience of 
the existing societies, and were highly disrup- 
tive to their agricultural foundations because 
social and technological innovations were not 
available to counter the rapidity, amplitude, 
and duration of changing climatic conditions. 

These past climatic changes were unrelated 
to human activities. In contrast, future climatic 
change will involve both natural and anthro- 
pogenic forces and will be increasingly domi- 
nated by the latter; current estimates show that 

we can expect them to be large and rapid (16). 
Global temperature will rise and atmospheric 
circulation will change, leading to a redistribu- 
tion of rainfall that is difficult to predict. It is 
likely, however, that the rainfall patterns that 
societies have come to expect will change, and 
the magnitude of expected temperature 
changes (17) gives a sense of the prospective 
disruption. These changes will affect a world 
population expected to increase from about 6 
billion people today to about 9 to 10 billion by 
2050. In spite of technological changes, most 
of the world's people will continue to be sub- 
sistence or small-scale market agriculturalists, 
who are similarly vulnerable to climatic fluctu- 
ations as the late prehistoric/early historic soci- 
eties. Furthermore, in an increasingly crowded 
world, habitat-tracking as an adaptive response 
will not be an option. 

We do, however, have distinct advantages 
over societies in the past because we can an- 
ticipate the future. Although far from perfect 
and perhaps subject to unexpected nonlinear- 
ities, general circulation models provide a 
road map for how the climate system is likely 
to evolve in the future. We also know where 
population growth will be greatest. We must 
use this information to design strategies that 
minimize the impact of climate change on so- 
cieties that are at greatest risk. This will re- 
quire substantial international cooperation, 
without which the 21st century will likely 
witness unprecedented social disruptions. 
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