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The Basics of Statistical Analysis

While this chapter does not presuppose sophistication in statisti-
cal analysis, and is not designed to substitute for formal training, 
we do try to summarize why statistical analysis is necessary for 
testing hypotheses cross-culturally. And we do discuss the basic 
tools that you will need to understand research that includes 
simple statistical results, tables, and figures. In chapter 10 we 
discuss more complex statistical analyses involving multiple 
variables. Statistics cannot really be taught in two chapters of a 
book, but we try.

Descriptive statistics and inferential statistics have very dif-
ferent purposes. Descriptive statistics are used to summarize 
data to make them comprehensible. Inferential statistics allow 
researchers to generalize their sample results to a larger uni-
verse, assuming that the sampling is unbiased and the research 
design is appropriate. Let us first turn to some basic ways of 
summarizing data.

Descriptive Statistics

Consider the example of a classroom test taken by 131 students. 
One student asks how the class did in general. Suppose the pro-
fessor were to hand out a piece of paper with 131 numbers on 
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124 / Chapter 8

it ordered in the sequence in which the individual papers were 
graded. Such a list would be hardly comprehensible. To be sure, 
the list would answer the question of how the class performed, 
but it doesn’t answer the question in any clear way. Probably 
the real intent of the student’s question was to find out how he 
or she did compared to everyone else. Most professors therefore 
usually put a frequency distribution on the board, showing how 
often a group of scores occurred. A frequency distribution pro-
vides a count of the number of people who got a particular score 
or one of a group of scores (A, B, C, etc., or a numerical range). 
When there are many possible scores, such as on a test with a 
hundred points, the professor could group the scores as shown 
in table 8.1. Looking down the frequency column tells you at a 
glance that more people got scores between 70 and 79 than any 
other range of scores. An alternative is to give percentages (see 
the “Percentage” column in table 8.1), which are just the fre-
quency counts divided by the number of cases and multiplied 
by one hundred. A more graphic way of showing the informa-
tion would be to show the frequency distribution as a bar chart 
as shown in figure 8.1. The vertical axis shows the frequency 
or number of people in each group of scores on the horizontal 
axis.

A measure of central tendency summarizes the data more 
succinctly. Such a measure conveys the center of the distribution 
with one number. We are very used to one measure of central 
tendency—what we call the average (the mean in the language 
of statistics). We are used to computing averages. You just add 

Scores Frequency Percentage

90–100 20 15.3
80–89 42 32.1
70–79 53 40.4
60–69 11 8.4
<60 3 3.8
Total 131 100.0

Table 8.1. Summary of Classroom Grades 
(frequency distribution and percentages)

©
 E

m
be

r,
 C

ar
ol

 R
., 

Ju
l 1

6,
 2

00
9,

 C
ro

ss
-C

ul
tu

ra
l R

es
ea

rc
h 

M
et

ho
ds

A
lta

M
ir

a 
Pr

es
s,

 L
an

ha
m

, I
SB

N
: 9

78
07

59
11

91
16



The Basics of Statistical Analysis / 125

up all the scores and divide by the number of cases. For the data 
shown in table 8.1 and figure 8.1, the average score is 78.63. 
There are two other common measures of central tendency—the 
median and the mode. The median score is that number below 
and above which 50 percent of the scores fall. In other words, 
if we rank-order the scores, the median would be the score of 
the middle case. If we rank-order the actual grades behind the 
grouped scores in table 8.1, the median score is 79. The mode is 
the score with the highest frequency. If there are many different 
scores, the test score with the highest frequency doesn’t make 
much sense to compute. But if we group the scores as shown in 
table 8.1 and figure 8.1, the modal group (with fifty-three scores) 
is the 70–79 range.

In the grade example just discussed, the mean, median, and 
grouped mode are almost identical. Why would we use one 
measure of central tendency over another to describe the center? 
The answer is that in most roughly symmetrical distributions, 

Figure 8.1. Bar graph of grade distribution
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126 / Chapter 8

the measure of central tendency doesn’t much matter. But it 
matters a lot if the distribution is skewed or not balanced, as the 
following example shows.

Let us suppose that we are interested in the typical income in 
three different communities. Table 8.2 shows the income of nine 
households in each community. (We normally would look at 
more households, but we are only looking at nine here to make 
the point easier to see.) Suppose we compute the mean (aver-
age) and the median scores for each community (see table 8.2). 
Let’s look at the mean scores first. If we look only at the mean 
scores, we might mistakenly infer that the “typical” household 
in community 1 has a higher income (mean = $34,167) than the 
“typical” household in community 2 (mean = $14,222). So why 
do the median scores not suggest the same kind of difference? 
The median scores suggest that the “typical” household in com-
munity 1 makes $12,500. The two measures of central tendency 
are quite different (about $24,000 different)!

It is important to recognize then that the three measures 
of central tendency may work differently in different circum-
stances. If we look at the actual numbers again, we notice that 
one household in community 1 (the last row in the community 
1 column) has an income well beyond any other household in 
the community. That household earns $200,000, which is at least 

 Community 1  Community 2  Community 3

 11,000  9,000  7,700
 12,500  14,000  6,900
 14,000  13,000  8,500
 19,500  19,000  7,500
 20,000  14,500  23,000
 9,000  12,500  57,000
 10,000  10,000  67,000
 11,500  16,000  59,000
 200,000  20,000  55,000

Mean 34,167 Mean 14,222 Mean 32,400
Median  12,500 Median 14,000 Median 23,000

Table 8.2. Yearly Income in Nine Households in Each of Three Communities
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$180,000 more than the others; none of the others earns more 
than $20,000. The mean is high for community 1 because when 
you compute a sum with one or a few very extreme numbers, 
the sum is heavily influenced by those numbers. The mean is 
analogous to the center of gravity (Senter 1969, 63–66). We all 
have had the experience of balancing on a seesaw with a friend 
about our size. What if we try to balance with a much heavier 
older child or a parent? We get pushed way up in the air. The 
only way to balance the seesaw is for the bigger person to move 
close to the balance point. (The lighter person could hardly 
move back!) If we think of the mean as being at the center of 
gravity or the point of balance, the mean will be influenced 
by a very skewed distribution that pulls it toward the extreme 
score(s) on one end. Notice that the median, which is the “mid-
dle” case, is not influenced by an extreme score. With regard to 
community 1, four households have more income than $12,500 
($14,000, 19,500, 20,000 and 200,000) and four households have 
less. It doesn’t matter whether the highest number is $200,000 or 
$21,000—the median remains the same. So, with a very skewed 
distribution, the median may give a better indication of where 
the center is. There is one circumstance where the median (as 
well as the mean) may be misleading. That instance is where 
there are few or no cases in the middle. Look at figure 8.2, which 
shows the distribution of income in community 3, grouped into 
$5,000 ranges (from the data in table 8.2). The median for income 
in community 3 is $23,000, but most households have either 
much lower income or much higher income. In this instance, 
we would be better off describing the shape of the distribution. 
This kind of distribution would be called bimodal; there are four 
households with very low incomes ($5,000–$9,999) and an equal 
number of households with incomes above $45,000. A researcher 
with a bimodal distribution would describe it more accurately in 
terms of modes than in terms of the mean or median. (Even dis-
tributions that did not have exactly equal modes would still be 
discussed as bimodal if the pattern looked similar to that shown 
in figure 8.2.)

So far the scales we have summarized are interval and ratio 
scales. Recall that we said in chapter 4 that nominal scales only 
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128 / Chapter 8

convey difference and ordinal scales only convey order. Means 
and median scores are best reserved for interval and ratio scales. 
If you wish to summarize nominal scores or grouped ordinal 
scores for a set of cases, it is best to use frequencies or percentage 
summaries. A modal score can also be given for the scale score 
with the highest frequency.

One other common kind of descriptive statistic is a measure of 
variability. This kind of measure helps us understand how much 
the scores are spread out. Two classes can have average scores of 
75 on a test. But in one class grades range from 20 to 100, while 
in the other class the grades range from 69 to 81. What we want 
is a measure conveying that the variability is wide in one class, 
but narrow in the other. The simplest measure of variability is a 
range. You can describe the grades in the first class as having a 
mean of 75 with a range of 80 points (100–20); the second class 
as having a mean of 75 with a range of 12 points (81–69). The 
main trouble with a range is that it is defined solely by the high-
est and lowest scores. If almost every score is clustered in the 
middle except for one or a few, the range would suggest a lot 

Figure 8.2. Distribution of income in community 3
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The Basics of Statistical Analysis / 129

more average variability than exists. A better measure of vari-
ability is to use the distance of every single score from the center 
and calculate some kind of average distance from the center. 
The most common such measures in statistics are the variance 
and the standard deviation. The variance is calculated as follows. 
The mean is subtracted from every score and the difference is 
squared. Then the squared distances are summed and the total is 
divided by the number of cases.1 The result is the variance. If you 
take the square root of this number, you have the standard de-
viation. Why are the distances squared? Couldn’t you just sum 
the distances? No, because if you subtract the mean from every 
score, some numbers will be positive and some will be negative; 
and if you sum them, they will cancel each other out. Squaring is 
one way to get rid of negative numbers before you sum them. To 
transform the variance to the original scale, you need to take the 
square root of the variance. Let’s look again at the income vari-
ability of communities 1, 2, and 3, using the standard deviation. 
First look at table 8.2. Intuitively, community 2 looks like it has 
the tightest cluster of income. Community 3 is pretty variable 
because four households make less than $9,000 and four make at 
least $55,000. Community 1 is more variable because one house-
hold (with $200,000) is far different from the others. Now let us 
compare the standard deviations for the three:

Standard Deviation
Community 1 62,310.21
Community 2 3,692.15
Community 3 38,692.14

The standard deviations convey the degree of variability we in-
tuited. Community 2 has the least variability, community 3 the 
next, and community 1 has the most.

There is one other kind of descriptive statistic that is impor-
tant—summarizing how strongly variables are related to one 
another. Because such summaries are usually calculated in the 
context of inferring a result to a larger universe of cases, we dis-
cuss them in the next section.
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130 / Chapter 8

Inferential Statistics

When researchers look at a sample of cases, they usually are 
not just looking to describe what they observe. They usually 
want to be able to generalize to a wider set of cases. When 
political pollsters ask a sample of individuals whom they will 
vote for, they usually are not content to say that politician X 
wins in this sample. They are interested in predicting how 
all the voters will vote in the election; they want to be able to 
predict the winner in the election. Pollsters know that they can-
not predict exactly, but they want to predict correctly within a 
small margin of error. When researchers are looking for a vac-
cine to prevent a deadly disease, they have to use clinical trials 
to see if the vaccinated are more likely to resist the disease than 
the unvaccinated, and then they can recommend use of the 
vaccine in the larger population. When we ask whether hunter-
gatherers are more peaceful than agriculturalists, we are asking 
about the situation generally; we don’t just mean among the 
cases we are looking at.

While we never can know for sure what is true in the larger 
set of cases, because it would be too time-consuming or expen-
sive to find out, most inferential statistical techniques rest on a 
few very simple principles:

•  It is assumed that the sample you have chosen is unbi-
ased. The best way to achieve that is to select the sample 
cases randomly from the larger universe of cases you wish 
to generalize to (this is why sampling strategies are so 
important).

•  A statistical “test of significance” will evaluate how likely 
it is that your result (or a better result) is due solely to 
chance. This is like playing devil’s advocate. The reason-
ing goes like this. Let’s pretend there is no difference or no 
relationship. What is the probability of getting the results 
you got (and better results) by accident? The lower the 
chance, the more we can believe that the result from the 
sample is correct.
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The Basics of Statistical Analysis / 131

These principles are simple. But learning statistics is compli-
cated because different kinds of tests make different assumptions 
about the data, and different types of measures require different 
types of tests. While computer programs make computations 
easy, they do not readily tell you whether a particular type of test 
is appropriate. If you give numbers for your variables to your 
computer, it will compute anything, even if it is not appropriate.

Tests about Relationships between Two Nominal Variables

In chapter 1, we introduced the notion of contingency tables, which 
we discussed further in chapter 5. Such tables are useful for dis-
playing how the sample cases are distributed in a cross-tabulation 
of the two nominal or categorical variables. Contingency tables 
may also be used to look at a relationship between two ordinal 
variables (that convey more or less of some quality or quantity), 
if there aren’t more than five or so scale points on each variable. 
And contingency tables can be used to examine an association 
between one nominal and one ordinal variable. The simplest con-
tingency table is referred to as a two by two table (two rows and two 
columns). If there were a perfect relationship between the two di-
chotomous variables, we would expect all the cases to fall into the 
two cells on one diagonal, as in the first table shown in box 8.1.

To make it easy to compute the probability of a particular result, we are de-
liberately going to use a very small sample. Suppose we randomly draw two 
hunting-gathering societies and two agricultural societies. Our hypothesis is 
that the hunter-gatherers will tend to lack permanent settlements. The alterna-
tive hypothesis, which the statistical test evaluates, is that there is no relation-
ship between hunting-gathering and lack of permanent settlements. Fisher’s 
Exact Test computes the probability that our observed result is due to chance.

First, look at the result displayed immediately below. At first glance, the 
result looks perfect. Look at the hunter-gatherer (HG) row. Two of the two 
hunter-gatherer cases lack permanent settlements. And in the agricultural row, 
two of the two agricultural cases have permanent settlements. There are no 
exceptions. 

Box 8.1. Computing Exact Probabilities (Fisher’s Exact Test)
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 No 
 Permanent Permanent
 Settlements Settlements Total

HG 2 0 2
Agric 0 2 2
Total 2 2 4

But is this result something we can trust, or is it due to chance? Here’s where 
we can compute the chance of this result or a better one (in this case there is no 
better one) occurring by chance and chance alone. We see how many different 
ways the cases could fall by chance. There is only one constraint in this test. 
We must keep the totals the same. The totals, called the marginals, are bolded. 
In other words, we must have two cases fall in the hunter-gatherer row, two in 
the agricultural row, and two cases in each column. 

Let us label the two hunter-gatherer cases “A” and “B” and the two agricul-
tural cases “C” and “D.” With the marginal constraints above, how many ways 
could the cases fall?

The table below shows each of the possible tables on the left (in bold). To 
the immediate right of each table are the possible combinations of A, B, C, 
and D that can make up this combination. Notice that for the perfect table we 
saw above, there is only one way the table can occur. But for the table below 
(1, 1, 1, 1), with one case in each cell, there are four different ways the cases 
could be distributed. The last table, which is directly opposite to the hypothesis 
expected, could only occur in one way. 

 2 0 AB

 0 2  CD  1

 1 1 A B

 1 1 C D

   A B

   D C

   B A

   C D  4

   B A

   D C

 0 2  AB

 2 0 CD   1

     Total 6

Box 8.1. (continued )
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Displaying a contingency table is not enough. We can look 
at the first table in box 8.1 and say that the relationship looks 
perfect because all the cases are on the diagonal. But in this table 
there are only four cases and we might suspect that the result 
could be due to chance. Box 8.1 takes you through the steps of 
computing the probability that this “perfect” result is due to 
chance.

We now have our probability; it is p = 0.167. So is our hy-
pothesis supported? To decide whether we accept or reject our 
hypothesis, we have to have a decision rule as to whether we 
will accept our hypothesis or not. It is best to set this rule before 
conducting your test. There is no right or wrong p-value. If it is a 
matter of life and death where you can’t afford to be wrong, you 
might want to see a very low chance of an accidental associa-
tion. However, when you make it harder to be wrong, you also 
make it harder to find associations that are probably true. Most 
social scientists accept the convention that if the probability of 

So, to return to the original question, what is the probability that the table 
we got at the very top of this box or a better one would occur by chance and 
chance alone? Since there are total of six ways that these four cases could dis-
tribute themselves (add up all the A, B, C, D tables), the probability of the top 
table occurring by chance is one out of six or 0.167. We would write under the 
following phrase under our observed table the phrase:

p = 0.167, one tail, by Fisher’s Exact Test

What the phrase means is: The probability of this strong a result or a stronger 
result occurring by chance in this direction (which is what the one-tail means) 
is one out of six or about seventeen times out of a hundred. The method of 
computation is Fisher’s Exact Test. (For larger samples, you can use a formula 
or look up the exact probability in a published table.) 

What does the “tail” mean exactly? Notice that when we figured out the 
various combinations, there were two perfect tables—the top and the bottom 
ones. If we started out with a hypothesis that did not predict a direction, that 
is, “Permanence of settlements is related to type of subsistence (hunting-gath-
ering versus agriculture),” the appropriate probability would be to add up the 
chances of this or better outcomes. So, we would add the probabilities 0.167 
and 0.167 for the two directions. Then we would say p = 0.33, two tails, by 
Fisher’s Exact Test.
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134 / Chapter 8

the result occurring by chance is less than or equal to 0.05, we 
can accept the hypothesis. If the p-value is 0.05 or lower, we say 
that the association is statistically significant. If the p-value is 
greater than 0.05, most researchers would reject the hypothesis. 
Given this convention about what to conclude from p-values, we 
would say that the relationship displayed near the top of box 8.1 
is not significant, because the p-value is higher than 0.05. Instead 
of writing the exact probability under our table we would prob-
ably write:

p > 0 .05, one tail, by Fisher’s Exact Test

However, keep in mind that the example we are consider-
ing involves only four cases. Realistically, we would not test 
this hypothesis with four cases because it is not possible to get 
a statistically significant result with only four sample cases in a 
contingency table. The minimum number of cases in a contin-
gency table that might provide a significant result is six, but the 
result has to be perfect. (If the table had been 3, 0, 0, 3, the p-value 
would have been 0.05 because there are twenty possible ways the 
six cases could be distributed and only one way the 3, 0, 0, 3 table 
could occur; hence the p-value would be one divided by twenty 
or 0.05.) If we really wanted to give this hypothesis a chance, we 
would probably choose a random sample of at least twenty cases, 
because there are almost always exceptions (cases that fall into 
the unpredicted cells because of measurement error, cultural lag, 
other causes, etc.). There are formulas and tables for looking up 
exact probabilities according to Fisher’s Exact Test for two by two 
tables with up to fifty cases. But most researchers would use the 
chi-square (�2) test for the significance of a contingency table that 
contains more than twenty or thirty cases. This is assuming that 
the chance-expected values (the values that would occur with no 
relationship) are five or more in each cell. If the expected values 
are large enough, chi-square tests can be calculated also when 
contingency tables are larger than two by two.

Sometimes we want to know more than whether two vari-
ables are probably associated. We want to know how strongly 
they are associated. Usually we are looking for strong predictors 
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because only together would they account for most of the cases. 
So, for example, if we want to understand why people in some 
societies go to war more often than people in other societies, 
we would expect a presumably causal variable to predict many 
cases, not just a few. Let’s look now at the top two rows of table 
8.3. In each row a perfect table is displayed on the left and a 
“nothing” table is displayed on the right. The difference between 
the top row and the bottom row is only in the number of cases in 
each table, one hundred in the top row and twenty in the bottom 
row. Since the number of cases in the top row is one hundred, 
we use a chi-square test to evaluate the statistical significance of 
a result. (Consult a statistics book for the formula for computing 
chi-square and a table in which to look up the p-values for differ-
ent values of chi-square. You will also need to know the degrees 
of freedom in a table. A two by two table has one degree of free-
dom because, given the row and column totals, once you know 
the number in one cell, you can calculate all the other cell values.) 
It is important to compute the test of significance first because 
the strength of an association is not relevant if the relationship is 
likely to be due to chance.

Notice that the first four left tables in the top row of table 
8.3 can be described as statistically significant because the chi-
square test gives associated p-values of less than or equal to 
0.05. The first three tables are even more significant since they 
would be likely to occur by chance less than one time out of one 
thousand.

We can intuit that the table on the left shows a strong re-
lationship because there are no exceptions—all the cases are 
on one of the diagonals. What we are looking for is a measure 
of association that will give a high score to the table on the 
left and a “zero relationship” score to the table on the extreme 
right. There are several measures of association for two by two 
tables. The different measures are usually based on different as-
sumptions and they have different mathematical properties (so 
you cannot compare one measure of association with another). 
The most important thing to realize is that measures of associa-
tion usually give scores (coefficients) that range between ±1.00 
and 0.00. A coefficient of –1.00 means that the association is 
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perfectly negative, that one variable goes up as the other goes 
down; a +1.00 coefficient means that one variable goes up as 
the other goes up. The direction is meaningful only when the 
pair of categories on each variable can be ordered (e.g., present 
versus absent, high versus low).

The phi (�) coefficient is a commonly used measure of as-
sociation for two by two tables. As you can see across the top 
row of table 8.3, the phi coefficients show that the strength of the 
relationship is weaker as you go from left to right. Notice that 
the tables in the second row have exactly the same proportion 
of cases on the diagonal as the top row tables. Not surprisingly, 
the phi coefficients are the same in the second row. However, 
only the two left-hand tables are statistically significant! We 
used Fisher’s Exact Test because the number of cases is relatively 
small, but we could have used chi-square since the expected 
value in each cell is at least five. This tells us that we cannot rely 
on the measure of association to draw an inference about statisti-
cal significance. We need to do the test of significance first.

While some might infer that it is better not to have a small 
sample because it is harder to get significant results, we would 
argue that it depends upon what you are looking to accomplish. 
If you are looking for strong predictors, a small sample may be 
advantageous. First, it is less work to code the cases for a small 
sample. Second, only strong associations will be significant.

One drawback of the phi coefficient is that it will only go to 
1.00 (or –1.00) with a symmetrical relationship. For example, in 
table 8.4, the totals for the rows do not match the totals for the 
columns and the maximum phi coefficient possible is 0.67.

This may be fine for some purposes. After all, you may ex-
pect there to be exceptions, even with a strong relationship, and 
therefore you cannot expect the coefficient of association to be 
1.00. But consider that each of the following theoretical models 
will produce different kinds of tables:

1.  X is the only cause of Y (X is necessary and sufficient).
2.  X is a sufficient cause of Y (that is, when X is present, Y is 

present; however, Y may have other causes and therefore 
Y may be present when X is absent).
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3.  X is a necessary cause of Y (that is, when X is absent, Y 
will be absent; however some additional factor is neces-
sary for Y).

Notice that table 8.4 is more consistent with model 2 than 
with models 1 and 3. If Y has more than one cause, then we 
would expect exceptions to the table in one particular cell (when 
X is absent, Y may be present). Those exceptions do not mean 
that X and Y are not related in a causal way. If X were a neces-
sary cause of Y, but not a sufficient cause, as model 3 suggests, 
we would expect a zero cell when X is absent and Y is present.

The point is that the statistical measure used should be con-
sistent with the theoretical model you expect to apply. If you do 
not expect that X is the only cause of Y, you may wish to choose 
a coefficient of association that goes to 1.00 with just one zero 
cell. In a two by two table, the gamma coefficient of association 
(which can be used for an ordinal by ordinal association) may be 
a better choice than the phi coefficient if you want the coefficient 
to go to one when there is one zero cell.

Some other coefficients for contingency tables are:

•  Lambda (based on how well you can predict Y from X, X 
from Y—the two coefficients may not be the same).

•  Uncertainty coefficient (based on how much uncertainty 
about one variable is reduced by knowing the other).

Table 8.5 summarizes the appropriate statistics for different 
types of variables.

 Variable Y

Variable X Present Absent Total

Present 40  0  40
Absent 20 40  60
Total 60 40 100

Table 8.4. Contingency Table with Unequal Column and Row 
Totals

Note: phi = 0.67
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Statistical Inference about Differences between Two Groups

Often a research question asks about differences between two 
samples or groups. Do males exhibit more aggression than 
females? Is one population taller than another? Do hunter-
gatherers have lower population densities than agriculturalists? 
In all these questions, we have two nominal groups to compare. 
However, in contrast to using a contingency table that is most 
appropriate for the intersection between one nominal scale and 
another, the three questions above allow for the possibility of 
measuring the other variable on an interval or ratio scale. For 
example, you can compare the number of aggressive acts (in 
a particular period of time) in two groups of children, you can 
compare the average adult heights in two human populations, 
or you can compare the population densities of a sample of 
hunter-gatherers and a sample of agriculturalists.

Assuming that you find a difference in means between the 
two groups and that certain assumptions are met (see below), 
the most commonly used statistic to test the significance of the 
difference between means is the t-test for independent samples 
(each of the two groups consists of different individuals). As in 
most other statistical tests, the t-test evaluates statistical signifi-
cance against the hypothesis that there is no difference between 
the groups. In other words, the t-test asks how likely is it that a 

 Females Males

 66 69
 72 65
 60 75
 65 74
 62 66
 71 68
 63 71
 64 67
 65 70
Mean = 65.33 Mean = 69.44

Table 8.6. A Hypothetical Comparison of 
Height (in inches) in a Sample of Adult Males 
Compared with Adult Females
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difference of magnitude X (or a bigger difference) could occur 
by chance if the larger populations from which the samples are 
drawn actually have the same mean scores.

An example of data that would be appropriate for a t-test is 
the hypothetical comparison of height (in inches) in adult males 
compared with adult females shown in table 8.6.

If we perform a t-test for independent samples, we get the 
following results:

t = 2.361, df = 16, p = 0.03, two tails

Once again, the p-value tells us the likelihood that this differ-
ence is due to chance and chance alone. Since the p-value is less 
than 0.05, the conventional level of significance, we can reject the 
hypothesis of no difference and accept the hypothesis that there 
is a significant difference in height between males and females. 
The p-value is given as two-tailed, which means that we have al-
lowed for the possibility of a difference in height in either direc-
tion (males taller than females, females taller than males). The df 
(degree of freedom) is the total number of cases (eighteen) minus 
the number of groups (two).

Assumptions of the t-test:

1.  The data are measured on interval or ratio scales.
2.  The populations have “normal” distributions on the mea-

sured variables. This means that the frequency distribu-
tions for the variables in both populations are roughly 
bell-shaped. The modal height is at the center and the 
curve slopes down symmetrically with very few cases at 
the extremes.

3.  The variances (or the standard deviations) for the two 
populations are roughly the same.

4.  The cases were randomly selected from their respective 
populations.

The t-test is relatively robust; it can tolerate some violation 
of its assumptions. But you could use tests that do not require 
the same assumptions. Because the t-test assumes certain char-
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acteristics or parameters (assumptions 2 and 3 above) about 
the populations the samples come from, the t-test is called a 
parametric test. Parametric tests make certain assumptions about 
the underlying distributions, such as that the distribution is 
normally distributed. Nonparametric tests, sometimes called 
“distribution-free” tests (Siegel 1956, 19), do not require para-
metric assumptions about the data.

Nonparametric tests to evaluate the difference between two 
groups are of course particularly useful if you have ordinal 
(rank-order) rather than interval measures. For example, in 
the height example above, if we did not have measurements 
by ruler, we could line the persons up by size and assign the 
shortest person the lowest rank (one) and the tallest person the 
highest rank (eighteen). One nonparametric test of difference 
between two groups, called the Mann-Whitney U test, evaluates 
the significance of the difference between one group’s average 
rank and the other group’s average rank. This test is analogous 
to the t-test, but makes no assumptions about the underlying 
distributions. If we perform a Mann-Whitney U test on the same 
data used in the t-test above, we find that the average rank of 
the males is 12.22 and the average rank of the females is 6.78. 
The Mann-Whitney U is 16 and p < 0.02, two tails. In this ex-
ample, the Mann-Whitney U test gives a p-value that is similar 
to the p-value given by the t-test, and this is generally true if we 
compare the outcomes of the two tests on the same data (Siegel 
1956, 126). That is, the Mann-Whitney U test can detect signifi-
cant differences between two groups just about as well as the 
t-test, without having to make parametric assumptions. Another 
nonparametric test for the significance of the difference between 
independent groups is the Kolmogorov-Smirnov test (Siegel 1956, 
127ff.).

Statistical Inferences about Differences among 
Three or More Groups

Suppose you want to compare more than two nominal groups 
on an interval variable. Perhaps you want to compare three or 
four populations on height, or compare population densities of 
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hunter-gatherers, pastoralists, horticulturalists, and intensive 
agriculturalists.

A parametric test can be used to test whether the means 
of more than two groups are significantly different. (If they 
are, we can say that the differences in means are unlikely to 
be due to chance.) This test is called a one-way analysis of vari-
ance (ANOVA).2 But what if the parametric assumptions cannot 
be met? Fortunately, there is also a nonparametric equivalent 
called the Kruskal-Wallis one-way analysis of variance. Like the 
Mann-Whitney U test, the Kruskal-Wallis test uses rank-ordered 
scores. This test is also almost as powerful as the parametric 
analysis of variance (Siegel 1956).

With three or more groups the inferential statistics and the 
associated p-values only tell you whether or not the differences 
in the sets of scores are unlikely to be due to chance. However, 
you cannot infer without further testing where the difference 
lies. Suppose you have three groups, A, B, and C. Perhaps all 
three groups are significantly different from each other, but it is 
possible that only one group is different from the others. And, if 
one is different, it could be A, B, or C that is different from the 
others. Most computer programs have special routines for test-
ing the difference between any pair of groups after the overall 
analysis of variance is performed.

Measures of Association and Tests of Significance for 
Interval and Ordinal Variables

All the associations (or differences) we have discussed so far 
involve at least one nominal variable. Now we turn to relation-
ships with more continuous scales—interval or ratio scales, or 
ordinal scales with many ranks.

Interval Variables

To examine the relationship between two interval scales, it is 
important first to plot the cases on a graph with an X and a Y 
axis and look at the scatter plot of points. This is to evaluate 
whether or not a relationship looks linear. If it does, you mea-
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sure the strength of the association in the usual way (i.e., by us-
ing Pearson’s r); if the relationship looks curvilinear, you should 
use another, more appropriate measure (e.g., eta) for the strength 
of the relationship. (See any statistics text for information about 
these measures.) The convention is to put the dependent vari-
able on the Y axis and the independent variable on the X axis. 
Bergmann’s Rule (C. R. Ember, Ember, and Peregrine 2007, 199) 
suggests that human populations living in colder climates have 
more body mass (weight). The reasoning is that it is more adap-
tive in cold climates to have more body mass, because the body 
conserves heat better the more mass it has. To test this directional 
hypothesis, Roberts (1953) conducted a cross-cultural compari-
son and found support for Bergmann’s Rule. We don’t show 
his data here, but let us imagine that a plot of temperature and 
weight (one point for each population) would look something 
like the plot shown in figure 8.3. How would we describe this 
relationship? We could say that, in general, colder temperatures 
are associated with more weight, but we could also describe the 

Figure 8.3. Scatter plot of average temperature and average weight (sample of 
eleven hypothetical populations)
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relationship in statistical terms. If the relationship looks roughly 
linear, as this one does, linear regression is a method for getting 
a straight line that best fits a set of points. It is important to try 
linear regression only when the relationship looks roughly lin-
ear.3 The most common method used is called “least squares.” 
Basically we arrive at a straight line that minimizes the squared 
vertical deviations of all the points from the line. Most comput-
ers do such computations in a very short time. If we do the least-
squares computation for X as a function of Y in our hypothetical 
data set (shown in figure 8.3), we get the line plotted in figure 
8.4. If we want to predict Y (average weight) from X (average 
temperature), we can use the formula for the line or the line it-
self to say what the weight would be if the average temperature 
were 45° Fahrenheit.

But the line or the formula for the line doesn’t tell us how strong 
the linear relationship is. (A line of best fit can be calculated for 
any set of points, no matter how much the points deviate from the 
line.) Pearson’s r is a measure of the strength of a linear relation-
ship. Just as with most other coefficients of association, Pearson’s 
r is 0.00 if there is no linear relationship and ±1.00 if all the points 

Figure 8.4. Line of best fit for average weight predicted by temperature 
(sample of eleven hypothetical populations)
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fall exactly on the line. (Remember that a minus sign would mean 
that as one variable goes up, the other goes down; a plus sign 
would mean that one variable goes up as the other goes up.) In 
our hypothetical data set, the r is �0.94. (As average temperature
increases, average weight decreases.) The coefficient is so strong 
(close to �1.00) because the points are not far off the line.

So far, everything we have described about linear regression 
is descriptive. That is, we have just described how you can get 
a formula for the best linear fit and a measure of the degree to 
which the points fall on a straight line. Neither of these things tells 
us whether the linear-looking relationship might be due to chance 
and chance alone. Remember that a best-fitting straight line can be 
drawn for any set of points, even one that does not look linear!

It is important then to test the significance of your measure 
of association. What is evaluated is the probability that the 
obtained coefficient (or a stronger one) could be due to chance 
if the true linear relationship were zero. In our example, the r 
could be positive or negative, but we would look for the one-
tailed significance because the direction of the relationship was 
predicted. The p-value for our hypothetical data set is <0.0005, 
one tail. This means that the likelihood of there being no nega-
tive linear relationship is less than five times in ten thousand.

What if the relationship is not linear? Figure 8.5 shows an 
example of a nonlinear relationship. If we didn’t plot our data 
but just asked for a Pearson’s r, we would have gotten an r of 
0.00 because the line of best fit in figure 8.5 is flat. (A flat line 
means that the best predictor of Y for each value of X is the mean 
of Y.) If the variation on X doesn’t help us predict the variation 
on Y any better than using the mean of Y, there appears to be no 
relationship between X and Y. But concluding that there is no 
relationship is obviously incorrect. There appears to be a strong 
relationship, but the nature of the relationship is not described 
by a straight line. Most statistical programs allow you to try to 
fit other curves to your data; the significance of these fits can also 
be determined. Figure 8.6 shows the fit of a quadratic equation, 
which appears to fit quite well. The associated p-value is 0.0005, 
which means that the chance of getting this result (if there were 
no quadratic relationship) is only five in ten thousand.
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Figure 8.6. A quadratic fit to a nonlinear relationship

Figure 8.5. Linear fit to a nonlinear relationship
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Ordinal Variables

Suppose you want to know if there is a relationship between 
two variables, each of which is measured on an ordinal scale. 
There are several nonparametric measures of association, each of 
which can be tested for statistical significance. Like Pearson’s r, 
each of these measures provides a coefficient that varies between 
0.00 and ±1.00. Tests of significance give probability values for 
the likelihood that these coefficients (or larger ones) would occur 
by chance, if there were no associations between the variables. 
The most commonly used measures are:

•  Spearman’s rho
•  Kendall’s tau (which is more appropriate when ties in rank 

are numerous)
•  Gamma (which can also be used, as we have noted, to mea-

sure the association in a contingency table with ordered 
rows and columns)

Recall that we discussed gamma when we talked about 
measures of association for two by two tables. Phi coefficients 
can reach 1.00 only when all the cases are on one diagonal. 
Gamma will reach 1.00 with one zero cell. If your theoretical 
model suggests that X is either a necessary or a sufficient cause 
of Y (but not necessary and sufficient), gamma may be the ap-
propriate choice. So, as we see in tables 8.7a and 8.7b, table 
8.7a would have a rho, tau, and gamma of 1.00. But for table 
8.7b, only gamma would be 1.00. Gamma goes to one when the 
cells on one side of the diagonal are empty, just as in table 8.7b 
where the cells below the diagonal are empty. Because of this 
characteristic, gamma usually gives you a higher coefficient 
than rho or tau for the same table. Your decision as to which 
measure to use for an association between ordinal variables 
should depend on what kind of association you theoretically 
expect, not on the fact that gamma would give you a larger 
coefficient.
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150 / Chapter 8

Multivariate Analyses

All of the analyses we have discussed so far consider the re-
lationship between two variables. Technically, two variable 
associations are called bivariate associations. Usually one is 
considered a possible cause and the other the possible effect. 
But often a researcher has reason to believe that more than 
one variable is possibly a cause. One of the most common situ-
ations is when previous research has supported a particular 
factor as a possible cause and a new researcher thinks that an 
additional factor is involved. The first step might be to see if 
the new factor also predicts by itself. If it does, the second step 
is to compare how well the new factor predicts, when its effect 
is compared with that of the previously suspected factor. In 
short, what we need this time around is an analysis that consid-
ers the possible independent effects of two or more variables 
on the dependent variable. Or, there may be other models that 
suggest how two or more variables are related. After the next 
chapter, we will provide a simple introduction to multivariate 
analyses.

 Y Y Y
 Rank 1 Rank 2 Rank 3

X Rank 1 8  2  2
X Rank 2  10  5
X Rank 3   20

Table 8.7b.  No Cases below Diagonal

 Y Y Y
 Rank 1 Rank 2 Rank 3

X Rank 1 10
X Rank 2  15
X Rank 3   20

Table 8.7a.  All Cases on Diagonal
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Notes

1. The formulas for variance and standard deviation are divided 
by n � 1 if you are calculating them to estimate the population from a 
sample; they are divided by n if you are dealing with the population.

2. A two-way analysis of variance allows for evaluating the effects 
of two nominal variables on a dependent variable that is an interval 
scale, but we will not discuss this type of analysis here.

3. The computations can be done without computers, but now these 
computations are rarely done without computer assistance.

©
 E

m
be

r,
 C

ar
ol

 R
., 

Ju
l 1

6,
 2

00
9,

 C
ro

ss
-C

ul
tu

ra
l R

es
ea

rc
h 

M
et

ho
ds

A
lta

M
ir

a 
Pr

es
s,

 L
an

ha
m

, I
SB

N
: 9

78
07

59
11

91
16



©
 E

m
be

r,
 C

ar
ol

 R
., 

Ju
l 1

6,
 2

00
9,

 C
ro

ss
-C

ul
tu

ra
l R

es
ea

rc
h 

M
et

ho
ds

A
lta

M
ir

a 
Pr

es
s,

 L
an

ha
m

, I
SB

N
: 9

78
07

59
11

91
16


